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Introduction 
 

Environmental aspects include potential 

damage to local and regional environment 

including humans. Over the last 30 years, 

there has been a very rapid growth in 

environment related legislations affecting 

chemical and power industry. The relation 

between the industry performance and the 

environment are complex and not fully 

understood. The balance recourse used and 

benefits yield are an individual and social 

judgment and is clearly difficult to quantify  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Sharrat, 1999). Selecting an appropriate set 

of indicators to represent multiple and 

sometimes disparate values is particularly 

challenging because the interpretation of 

impacts depends on indicator roles and 

relationships among indicators (Glenn et al., 

2016). However, environmental regulations 

and indicators are widely used. Using 

potential ecological indicators is important 

in assessing ecological risk and/or impact 

Dependent Environmental Indicators and Their Effect of Ranking 

   
Ghanima Al-Sharrah, Yusuf I. Ali* and Amir A. Al-Haddad 
  

Chemical Engineering Department, Kuwait University, Kuwait 

 

*Corresponding author    

A B S T R A C T  
 

The adverse effect on the environment is mainly due to the release of harmful 

chemicals that affects the world’s ecological system. The concentrations of 

these chemicals are considered as the main indicators for environmental 

assessment. In some cases, environmental indicators are highly dependent 

and their inclusion will increase the size of experimental data to be collected 

and studied. Moreover, it will also increase computational time. This paper 

will answer the question if dependent indicators should be included when 

environmental decision making is to be made through ranking. It presents a 

methodology to implement simple tests on environmental indicators to check 

if their inclusion in the decision-making exercise is essential. A case study on 

desalination plants in the Arabian Gulf area will be presented. Although 

different and advanced desalination methods are being used, their 

environmental effects need to be assessed and a reliable methodology needs 

to be assessed and a reliable methodology needs to be established to identify 

existing harmful plants. The problem of insufficient data for decisions on 

desalination plants is resolved by identification of dependent indicators. 

 

KEYWORDS 

 

Environmental 

Indicators, 

world’s ecological 

system,  

harmful  

chemicals. 

 

International Journal of Current Research 
and Academic Review  

ISSN: 2347-3215 Volume 4 Number 4 (April-2016) pp. 51-60 

Journal home page: http://www.ijcrar.com 
doi: http://dx.doi.org/10.20546/ijcrar.2016.404.006 

 

http://www.ijcrar.com/
http://dx.doi.org/10.20546/ijcrar.2016.404.006


 

Int.J.Curr.Res.Aca.Rev.2016; 4(4): 51-60 

 52 

evaluations from observations at a molecular 

level (Jin-Soo, 2015). Regulations now 

cover products, air and water quality, waste 

disposal, soil reclamation, noise abatement 

and related matters.  Environmental 

indicators cover wide range of aspects. 

However, the most important amongst these 

is chemical effect and/or concentration. 

Industrial chemical risk ranking has received 

the most attention, and several systems have 

been used, for example, to determine which 

chemical/location should have more 

environmental regulations. Davis et al. 

(1994) gave a good review of 51 chemical 

ranking and scoring systems. They 

presented, among others, the system method 

or algorithm, chemicals and data selection 

approach together with literature resources 

for ranking chemicals. Strengths of several 

certification schemes can be combined with 

research-based indicators, to increase the 

reliability of environmental assessments 

(Markus, 2014).  

 

The problem that is usually associated with 

the environmental indicators is data 

availability. Environmental justice efforts 

suffer from incomplete data (Lobdell et al., 

2011) and in some special cases the 

abundant data will result in developing 

techniques to reduce the model complexity 

and selecting a model subset data from 

experiential data (see for example  Pavan et 

al., 2005). This requires preparing as small 

as possible data set before doing any 

environmental decision making. The 

existence of dependent environmental 

indicators encourages the reduction of data 

set and this will be studied in this work. 

 

Dependent Environmental Indicators 

 

The selection of appropriate measures of 

environmental performance for a process 

will depend on the nature of the 

environmental concerns, type and quantity 

of information available and degree of 

accuracy required in the representation. 

Several environmental analysis indicators or 

attributes have been developed, some of 

them are internationally known and proven. 

Some have been used and developed inside 

companies. The different environmental 

indicators are suitable for different stages of 

process development, design and operation. 

Some can be applied at a very early stage of 

planning and require an overall knowledge 

of the system under consideration, and some 

must be applied onto existing units with full 

knowledge of all aspects of the unit. It is 

clear that irrelevant and redundant indicators 

should be eliminated from environmental 

analysis or decision making. However, a 

question is raised: should dependent 

indicators be eliminated? 

 

In the science field, dependent variable is 

the variable expected to change whenever 

the independent variable is changed and 

correction can be obtained between them. 

Methods for correlation between data are 

generally classified as statistical or 

conceptual. Statistical methods are oriented 

towards numerical data and create 

characterization in terms of correlation, 

statistical distribution, variance (Imam et al., 

1993). Conceptual methods are oriented 

towards qualitative data and rules. 

Environmental assessment can benefit from 

consideration of the correlation structure 

among indicators (Sutherland et al., 2016) 

and this will help in reducing data collection 

for the assessment and can provide 

information about the underlying system and 

help in constructing a more appropriate 

environmental model. Dependency between 

environmental indicators are studies widely 

in environmental assessment, for example, 

between dissolved oxygen and pH 

(Makkaveev, 2009), CO2 emission and 

energy consumption (Omri, 2013) and in 

watersheds (Sutherland et al., 2016). 
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Piegorsch and Bailer (2005) showed that 

environmental data can be modeled as 

linear, multiple-linear and simple nonlinear 

models. Al-Sharrah (2011) indicated that 

when chemicals are studied and they are 

ranked according to their hazardous effect, 

the indicators (Y1, X1, X2) (e.g. threshold 

limit value, lethal dose ... etc.) can be 

correlated using multiple linear correlation 

with a correlation parameter.  

 

 
 

The Y1 indicator will have a correlation of ρ 

with the X1 indicator, i.e., statistically, Y1 is 

more significantly correlated to X1 than X2. 

It is worth mentioning that correlation 

between environmental data can be known 

from an expert knowledge of the system or 

by statistical methods (e.g. covariance) 

applied on the environmental data. 

 

Ranking for Decision Making 

 

Decision-based ranking and scoring systems 

can be used to focus attention and resources 

on the largest potential risk or gain. The 

decision is usually the final stage of an 

exercise which started with data collection 

of some objects and their corresponding 

indicators. Examples of objects include 

projects, chemicals, databases etc. and 

examples of indicators include prices, 

environmental releases, physical properties 

etc. The decision on these objects is to 

determine the most important objects that 

cause high loss and thereafter needs 

attention and/or modification. 

 

Decision-based ranking is used extensively 

in environmental analysis. Studies include 

ranking projects (Brans et al., 1986), 

environmental databases (Brüggemann and 

Voigt, 1995), pesticides (Halfon et al., 

1996), sediment sites (Brüggemann et al., 

2001). Industrial chemical risk ranking has 

received the most attention, and several 

systems have been used, for example, to 

determine which chemical plant should have 

more environmental regulations.  

 

In general, ranking method can be classified 

as relative ranking and categorize methods. 

Relative ranking means that an overall rank 

or score is derived for the objects relative to 

one another and categorize means that 

groups of objects are assigned high medium 

or low rank or selected, non-selected 

objects, using different comparisons 

between their indicators. Examples of 

relative ranking are Copeland method (Al-

Sharrah, 2010), Simple Additive Ranking 

(SAR) and examples of categorize methods 

are Hasse diagram (Halfon & Reggiani, 

1986).  Some of the methods are parametric 

methods i.e. that a decision maker should 

provide information or judgment to combine 

the different indicators in order to obtain the 

rank. A simple example is when weights 

assigned to the indicators are to be in a form 

suitable to be aggregated into a single 

number from which a rank can be obtained. 

SAR is simply ranking of objects with 

respect to each indicator separately, and then 

subsequent aggregation of the weighted 

ranks by arithmetic mean. The Hasse 

diagram and the Copeland method are 

considered non-parametric method that have 

been used extensively in decision-based 

ranking, for example (Brüggemann and 

Voigt, 1995). A representation of the 

decision making from SAR with equal 

weights and Copeland are presented in 

Figure 1. Both of these methods depend on 

comparison of indicators however their final 

results may differ. 

 

Other useful and simple relative or total 

ranking methods are discussed in (Pavan and 

Todeschini, 2004). For R indicators and I 

objects and possible weights w for the 
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indicators, the following are two widely 

used total ranking methods: 

 

Desirability Function 

 

The approach of the desirability function is 

to define a desirability function for each 

indicator in order to transform values y of 

the indicator to some scale 

 

 
 

The overall desirability is calculated by 

combining all the desirability through a 

geometrical mean. 

 

Utility Function 

 

The approach is very similar to the 

desirability function; each indicator is 

independently transformed into a utility 

function. However, subsequent aggregation 

of the weighted function is done by an 

arithmetic mean. 

 

Methodology 

 

As mentioned earlier, correlations relating 

environmental data recommended by 

Piegorsch and Bailer (2005) are linear, 

multiple-linear and simple nonlinear models. 

Our specific approach in studying dependent 

environmental indicators is to know which 

type from the above correlations affects 

environmental decision making when it is 

done by ranking. First, random data were 

used to provide the above mentioned 

dependencies and later decision making was 

generated from the data using different 

ranking methods; and finally case studies 

will be presented using real data.  

 

Three types of models between 

environmental data will be studied, linear: 

 

 

Where Y1, X1 are environmental indicators, 

a0, a1 are model parameters and ɛ1  is the 

additive error term and 

 

Multiple linear 

 

 
 

Where ρ is the correlation coefficient. 

 

Simple Non-linear 

 

 
 

At this stage of analysis, random numbers 

will be used to test the effect of 

environmental correlations on decisions-

making. Steps are as follows:  

 

1. Original Data: Sequences of uncorrelated 

normal distributed random indicators X1, 

X2,..Xn for hypothetical objects Obj1, 

Obj2, …Objm are generated using Excel. 

 

2. Extended Data: A correlation model is 

selected and a dependent indicator Y1 is 

calculated for all objects using that 

correlation. 

 

3. Decision ranking: Ranking is obtained 

using the original and extended data. 

Results of ranking will place the objects 

(assigned a numerical rank) from top to 

bottom to represent the most and the lease 

important object i.e. decision-making. 

 

4. Comparison: Ranks from original and 

extended data are compared using the 

Pearson product-moment correlation 

Coefficient (PPMC).  

 

Random data were generated using Excel 

with sizes up to 10 objects with 8 indicators. 

To apply the Copeland ranking method, a 

program was written in MATLAB (2010); 

however for other ranking methods, the 
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computations were performed using the 

DART (2010) software. These methods 

include Desirability, Utility, and Simple 

additive ranking.  

 

Results show that ranking results were not 

highly affected by the addition of a 

correlated data. The PPMC ranged from 

0.9805 to 0.9238 and this means that if 

correlated environmental data exist in a 

decision making exercise, their exclusion 

will not affect the ranking of objects in the 

exercise. This is very helpful in cases of 

incomplete data sets and/or for large data 

sets. The following case study will present 

this result on real data. 

 

Case Studies 
 

Desalination plants and their environmental 

impact into seawater 

 

Desalination was first used by Greek sailors 

in the 4th century BC to create drinking 

water by evaporating seawater. Today there 

are many technologies used for desalination 

that can process more than 1 million cubic 

meters per day. The selection of the 

desalination process is typically based on 

different operational parameters such as the 

availability of a raw water or energy source 

(e.g., seawater vs. brackish water or low-

cost heat vs. electricity), the product water 

demand, intended use and product water 

quality specifications (industrial vs. 

municipal use), or the technical know-how, 

capacity and costs to build, maintain and 

operate the plant (Tsiourtis, 2001). 

 

The two main desalination technologies are 

membrane by Reverse Osmosis (RO) and 

Thermal by Multi Stage Flash (MSF) 

desalination. Reverse Osmosis (RO) 

desalination uses the principle of osmosis 

with hydraulic pressure as a driving force to 

remove salt and other impurities, by 

transferring water through a series of semi-

permeable membranes. Multi Stage Flash 

(MSF) desalination uses heat to evaporate 

and condense water to purify it through 

different stages with different pressures. 

Other new technologies are emerging now 

such electrodialysis as (ED) pressure-

retarded osmosis (PRO). These new 

technologies need to be evaluated against 

the existing ones in terms of sustainability, 

efficiency and reliability. 

 

The increases in desalination plants in many 

sea regions especially in the Arabian Gulf 

and the growing number of industrial-sized 

facilities raises concerns over potential 

negative impacts of the technology on the 

environment. The impacts of a seawater 

desalination plant on the marine habitat 

depend on the physical and chemical 

properties of the discharge streams. 

Therefore, a good knowledge of both the 

effluent properties and the receiving 

environments is required in order to evaluate 

the potential impacts of desalination plants 

on the marine environment which has a 

considerable amount of uncertainty. 

 

This work is aimed for environmental 

assessments and decision making framework 

for desalination plants using data about the 

chemical and physical discharges into the 

sea and their marine ecological effects. The 

assessment is done using ranking. Special 

attention is given to the Arabian Gulf where 

50% of worldwide seawater plants operate. 

Desalination of water is an important 

method for solving water shortage in 

Arabian Gulf countries; however, its adverse 

environmental effects have started appearing 

in shallow Arabia Gulf. 

 

Several issues must be addressed for any 

environmental evaluation of desalination. 

The resulting brine must be disposed off in 

such a way with minimum impact to the 
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environment. All desalination plants use 

chemicals as part of the pre-treatment 

process of the feed water, and for post-

treatment process of product water. This 

practice results in discharge of liquid wastes 

such as disinfectants (Chlorine and 

biocides), de-fouling and antiscalant agents 

along with the brine.  

 

Discharged brine contains low 

concentrations of metal ions resulting from 

corrosion, namely copper, nickel, chromium 

and iron. These concentrations are 

profoundly increased with acid cleaning of 

the plants. 

 

In desalination studies, the effects on 

environment are studied to a limited extent.  

Roberts et al. (2010) noted that a large 

proportion of the published work is 

descriptive and provides little quantitative 

data that can be assessed independently. 

Most studies study temperature, salinity, 

chemical disposals and temperature. Water 

temperature is one of the most important 

characteristics of sea environment, affecting 

dissolved oxygen and chemical and 

biological processes. Dissolved oxygen and 

temperature are two fundamental 

measurements of sea productivity and health 

with clear dependent relation between them. 

Also, it is shown that the changes of the pH 

values are nonlinear relative to the content 

of oxygen (Makkaveev, 2006). 

 

Bu-Olayan and Bivin (2006) has reported 

trace metal levels in sea water from five 

sites of Kuwait Bay where many 

desalination plants are present.  
 

They reported five metals during harmful 

algal blooms and non-harmful algal bloom 

for both seawater and ctenophore? samples 

in two seasons, summer and winter forming  

a data matrix with 5 objects (sites) and 40 

indicators (5 metal concentration in 2 

samples in 2 seasons). The metal 

concentrations are highly linearly correlated 

and if this data is used for ranking sites, then 

a reduction can be done using one of the 

metals only.  

 

This leads a reduced data matrix of 5 objects 

(sites) with 8 indicators (metal concentration 

in 2 samples in 2 seasons). Results from 

both the original and reduced data matrix 

gave the same decision making; ranking 

sites from most contaminated to the lowest 

as: Site-III (Khanma) - Site-IV (Towers) - 

Site-V (Salmiya) - Site-II (Doha) - Site-I 

(Subiyah). 

 

Another case study is based on the data 

studied by Modamed et. al, (2005) and 

shown in Table 1. 

 

The indicators are the rows of Table 1 and 

the objects to be ranked are the columns and 

they represent desalination plants in the 

GCC area. It is clear that some data are 

missing from Table 1 and if a decision is to 

be made about which of the above plants are 

affecting the environment, the problem of 

missing data should be solved.  

 

Alternatively, a good justification has to be 

given to exclude the incomplete indicators. 

It would be possible to exclude incomplete 

indicators if a relation can be found with 

other indicators or if they are irrelevant to 

the environmental objective. Starting with 

SiO2, this chemical is considered to be safe 

by the world health organization (WHO) and 

it’s actually a dietary requirement for 

various organisms; therefore it can be safety 

excluded from the environmental analysis.  

 

The next is Carbonate (CO3
-
), this ion 

together with the bicarbonate is highly 

correlated to the pH (Holmes-Farley, 2002). 

Therefore, it can be removed from the data 

set before ranking the plants. Using all the 

discussed ranking methods i.e. Copeland, 
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SAR, Utility and desirability ranking results 

indicate that the desalination plants can be 

ranked from most hazardous to the lowest 

as: Umm Alquain, Alssadanat,  then 

Hamriyah. 

 

 

 

Table.1 Chemical Composition of Reject Brine from Inland Desalination Plants in GCC 

Countries (Mohamed et al., 2005) 

 

Parameter 

Alssadanat, 

Oman 

Umm 

Alquain, 

UAE 

Hamriyah, 

Sharjah, UAE 

Ca
++

, mg/l 923 202 173 

Mg
++

, mg/l 413 510 311 

Na
++

, mg/l 2780 3190 1930 

K
++

, mg/l 81.5 84.5 50.7 

Sr
++

, mg/l 28.2 21.1 14.2 

Sum cation, meq/l 203.06 192.98 119.48 

pH 7.21 7.54 7.66 

Electrical conductivity, 

mS/cm 
16.8 14.96 127.41 

TDS, mg/l 10553 10923 7350 

NO3, mg/l 7.2 27.4 15.9 

F
-
, mg/l 0 1.6 1.3 

Cl
-
, mg/l 4532 4108 2933 

SO4, mg/l 1552 2444 1537 

SiO2, mg/l NA 164.09 133.71 

Carbonate (CO3
-
) NA NA NA 

Bicarbonate (HCO3
-
) 466 656 753 

N
-
 1.6 6.2 3.6 

Sum anions, meq/l 167.88 198.05 127.41 

Ion balance 9.48 4.02 -3.21 

SAR 19.12 27.2 20.3 

SER 59.55 71.91 70.27 

L.I 1.24 1.04 1.26 

R.I 4.73 5.46 5.14 

Total ion, mg/l 10781 11245 7719 

Total alkalinity 380 538 617 

Total hardness 4041 2630 1730 

Fe, meq/l 0.06 0.08 0.05 
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Figure.1 SAR and Copeland Ranks 

 

(a)  Indicators  (b)     

  ∆     Rank ∆ Rank  SAR Rank 

O
b
je

ct
s 

a 0.5 0.5  

O
b
je

ct
s 

a 5 5 5 

b 3 5 → b 2 1 1.5 

c 4 3.5  c 1 3 2 

d 2 4  d 4 2 3 

e 2.5 1  e 3 4 3.5 

  ↓       ↓ 

(c)  Objects   (d) 

  a B c D e Copeland 

Rank 

  

O
b
je

ct
s 

A 0 -2 -2 -2 -2 -8  b 

B +2 0 0 +2 +2 +6  c 

C +2 0 0 0 +2 +4 → d 

D +2 -2 0 0 0 0  e 

E +2 -2 -2 0 0 -2  a 
(a) Data matrix. (b) SAR (c) Copeland pair-wise comparison matrix (+1 occurrence of (>), -1 occurrence of 

(<), 0 otherwise). (d) Final relative rank 

 

Conclusion 

 

One simple method of taking decisions on 

where to start to minimize the negative 

impact on the environment is to rank objects 

(plant, areas, technologies, etc.) according to 

their released contaminating ability. This 

work has shown that environmental 

indicators are correlated and this can be used 

to understand environmental relation and 

help in reduction of effort in data collection. 

The exclusion of correlated environmental 

indicators will not affect the results of 

ranking the objects if the ranking was based 

on comparison indicators, methods such as 

Copeland, SAR, Utility and desirability. The 

study applies different ranking methods 

using some environmental indicators in the 

GCC area. This work has shown a 

methodology on how to handle 

environmental data to reach an 

environmental decision and how to handle 

missing data which usually exist in many 

environmental studies.  

 

References 

 

Al-Sharrah, K. 2010. Ranking Using the 

Copeland Score: A Comparison with 

the Hasse Diagram. J. Chem. Inf. 

Model., 50: 785–791. 

Al-Sharrah, K. 2011. The copeland method 

as a relative and categorized ranking 

tool. Statistica & Applicazioni - 

Special Issue: 81-95. 

Brans, J.P., Vincke, Ph., Mareschal, B. 

1986. How to select and how to rank 

projects: the Promethee method. 

European J. Operational Res., 24: 

228-238. 

Brüggemann, R., Voigt, K. 1995. An 

evaluation of online databases by 

methods of lattice theory. 

Chemosphere, 31(7): 3585-3594. 

Brüggemann, R., Halfton, E., Welzl, G., 

Voigt, K., Steinberg, C.E.W. 2001. 

Applying the concept of partially 

ordered sets on the ranking of near-

shore sediments by a battery of  tests. 



 

Int.J.Curr.Res.Aca.Rev.2016; 4(4): 51-60 

 59 

J. Chem. Information and Computer 

Sci., 41: 918-925. 

Bu-olayan, A., Bivin, V. 2006. Validating 

Ctenophore Pleurobrachia pileus as an 

Indicator to Harmful Algal Blooms 

(HABs) and Trace Metal Pollution in 

Kuwait Bay.Turkish J. Fisheries and 

Aquatic Sci., 6: 01-05.  

DART, version 2.05; Institute of Health and 

Consumer Protection, European 

Commission Joint Research Centre 

Web Site. 

http://ecb.jrc.ec.europa.eu/qsar/qsar-

tools/index.php?c=DART (accessed 

Feb. 11, 2016) 

Davis, G.A., Swanson, M., Jones, S. 1994. 

Comparative evaluation of chemical 

ranking and sorting methodologies. 

University of Tennessee, Center for 

Clean production and Clean 

Technologies. 

Glenn, D., Sutherlanda, F., Louise 

Waterhouseb, Jason Smitha, Sari, C., 

Saundersb, Katherine Paigec, Joshua 

Maltd. 2016. Developing a systematic 

simulation-based approach for 

selecting indicators in strategic 

cumulative effects assessments with 

multiple environmental valued 

components. Ecol.  Indicators, 61(Part 

2), 512-525. 

Halfon, E., Galassi, S., Brüggemann, R., 

Provini, A. 1996. Selection of priority 

properties to assess environmental 

hazard of pesticides. Chemosphere, 

33(8): 1543-1562. 

Halfton, E., Reggiani, M.G. 1986. On 

ranking chemicals for environmental 

hazard. Environ. Sci. Technol., 20: 

1173-1179. 

Holmes-Farley, R. 2002. Chemistry and the 

Aquarium: The Relationship between 

Alkalinity And pH, Volume 1. 

http://www.advancedaquarist.com/2002/5/ch

emistry 

Imam, I.F., Michalski, R.S., Kerschberg, L. 

1993. Discovering attributes 

dependence in databases by 

integrating symbolic learning and 

statistical analysis techniques. Proc. 

Of knowledge Discovery in Database 

Workshop. AAAI-93 264-275. 

Jin-Soo Chang. 2015. Understanding the 

role of ecological indicator use in 

assessing the effects of desalination 

plants. Desalination, 365: 416–433. 

Lobdell, D., Jagai, J., Rappazzo, K. 2011. 

Data Sources for an Environmental 

Quality Index: Availability, Quality, 

and Utility Am. J. Public Health, 

101(Suppl 1): S277–S285. 

Makkaveev, P.N. 2009. The features of the 

correlation between the pH values and 

the dissolved oxygen at the Chistaya 

Balka test area in the Northern 

Caspian Sea. Oceanol., 49(4): 466-

472. 

Markus, A., Meyer. 2014. Indicators of 

bioenergy-related certification 

schemes – An analysis of the quality 

and comprehensiveness for assessing 

local/regional environmental impacts, 

Biomass and Bioenergy, 65: 151–169. 

MATLAB, version 7.1; the MathWorks Inc.: 

Natick, MA, USA, 2010. 

 Mohamed, A.M.O., Maraqa, M., Al 

Handhaly, J. 2005. Impact of land 

disposal of reject brine from 

desalination plants on soil and 

groundwater.  Desalination, 182: 411–

433. 

Omri, A. 2013. CO2 emissions, energy 

consumption and economic growth 

nexus in MENA countries: Evidence 

from simultaneous equations models. 

Energy Economics, (40): 657–664. 

Pavan, M., Todeschini, R. 2004. New 

indices for analyzing partial ranking 

diagram. Analytica Chimica Acta, 515: 

167-181. 

http://link.springer.com/journal/11491
http://www.sciencedirect.com/science/journal/01409883
http://www.sciencedirect.com/science/journal/01409883/40/supp/C


 

Int.J.Curr.Res.Aca.Rev.2016; 4(4): 51-60 

 60 

Pavan, M., Consonni , V., Todeschini, R. 

2005. Partial Ranking Models by 

Genetic Algorithm Variable Subset 

Selection (GAVSS) Approach for 

Environmental Priority Settings. 

MATCH, Commun. Math. Comput. 

Chem., 54: 583-609. 

Piegorsch, W.W., Bailer, A.J. 2005. 

Analyzing environmental data. Wiley 

& Sons. 

Roberts, D.A., Johnston, E.L., Knott, N.A.  

2010. Impacts of desalination plant 

discharges on the marine environment: 

A critical review of published studies. 

Water Res., 44: 5117-5128. 

Sharrat, P. 1999. Environmental Criteria in 

Design, Computers & Chem. 

Engineering, Vol. 23: 1469-1475. 

Sutherland, G.D., Waterhouse, F.L., Smith, 

J., Saunders, S.C., Paige, K., Malt, J. 

2016. Developing a systematic 

simulation-based approach for 

selecting indicators in strategic 

cumulative effects assessments with 

multiple environmental valued 

components. Ecol. Indicators, 61(Part 

2), 512-525. 

Tsiourtis, N. 2001. Desalination and the 

environment. Desalination, 141(3): 

223–236. 
 

How to cite this article:  

 

Ghanima Al-Sharrah, Yusuf I. Ali, Amir A. Al-Haddad. 2016. Dependent Environmental 

Indicators and Their Effect of Ranking. Int.J.Curr.Res.Aca.Rev.4(4): 51-60.     

doi: http://dx.doi.org/10.20546/ijcrar.2016.404.006 
 

 

 

http://www.sciencedirect.com/science/article/pii/S1470160X15005397
http://www.sciencedirect.com/science/article/pii/S1470160X15005397
http://www.sciencedirect.com/science/article/pii/S1470160X15005397
http://www.sciencedirect.com/science/article/pii/S1470160X15005397
http://www.sciencedirect.com/science/article/pii/S1470160X15005397
http://www.sciencedirect.com/science/article/pii/S1470160X15005397
http://www.sciencedirect.com/science/article/pii/S1470160X15005397
http://dx.doi.org/10.20546/ijcrar.2016.404.006

